ΕΝΣΤΑΣΗ ΣΤΟ ΑΡΘΡΟ 4
Έχω μία σοβαρή ένσταση πάνω στην διαδικασία εξαγωγής του 5ου βαθμού για την εισαγωγή του μαθητή στην Τριτοβάθμια Εκπαίδευση. Αρκεί ένα παράδειγμα για να αποδείξω την αδικία που γίνεται κατά την διαδικασία.
Έχουμε δύο μαθητές της Γ λυκείου που δίνουν πανελλαδικές.
Για τον Α μαθητή ισχύει:
Ο γενικός βαθμός προαγωγής της Α’ τάξης Γενικού Λυκείου είναι 14.
Ο γενικός βαθμός προαγωγής της Β’ τάξης Γενικού Λυκείου είναι 15.
Ο γενικός βαθμός προαγωγής της Γ’ τάξης Γενικού Λυκείου είναι 16.
Και τα γραπτά του στα τέσσερα πανελλαδικός εξεταζόμενα μαθήματα βαθμολογήθηκαν όλα με 11, οπότε και ο μέσος όρος των γραπτών είναι 11.
Τότε ισχύει: ΒΠΑ=(14*0,5+15*0,7+16*0,9)/3=10,63311=Μ.Ο. πανελλαδικών μαθημάτων.Οπότε ο πέμπτος βαθμός για την εισαγωγή του μαθητή Β στην Τριτοβάθμια Εκπαίδευση θα είναι Χ=[11*0,5+11*0,7+11*0,9]/3=7,7
Σχολιασμός: Η παρούσα λοιπόν τακτική που χρησιμοποιείται στο νομοσχέδιο είναι μονόφθαλμη και εμπεριέχει κινδύνους. Παραπάνω φαίνεται καθαρά η διαφορά που υπάρχει μεταξύ των δύο μαθητών με την ίδια επίδοση στις πανελλαδικές, αλλά με διαφορετικές επιμέρους βαθμολογίες στις 3 τάξεις του λυκείου. Και συγκεκριμένα το παράλογο είναι πώς ο μαθητής Β με καλύτερη βαθμολογία στην Α λυκείου και την Β λυκείου να βαθμολογείται αρκετά λιγότερο από τον μαθητή Α. Δηλαδή τιμωρείται ο Β μαθητής για την πτώση στην απόδοσή του πράγμα αντιπαιδαγωγικό και παράλογο.
Θεωρώ λοιπόν ότι δεν έχουν προβλεφθεί όλες οι περιπτώσεις με τον συγκεκριμένο τρόπο βαθμολόγησης επομένως πάμε να λύσουμε ένα πρόβλημα (ενδεχόμενη υποκειμενική αξιολόγηση μαθητών) δημιουργώντας πολλαπλάσια.
Προτάσεις: Για ποιο λόγο τελικά να βάλουμε και 5ο βαθμό στην όλη διαδικασία; Δεν αποτυπώνεται η κατάσταση του μαθητή με τις πανελλαδικές εξετάσεις; Κάποιοι ενδεχομένως ορθός να πουν όχι, τότε θα πρέπει να συμπεριληφθούν με κάποιον τρόπο και οι βαθμολογίες των άλλων τάξεων του λυκείου. Πάντως ο τρόπος που χρησιμοποιείται στο νομοσχέδιο δεν είναι ο ορθός κατά την ταπεινή μου άποψη.
ΥΠΟΒΟΛΗ ΣΥΓΚΕΚΡΙΜΕΝΗΣ ΠΡΟΤΑΣΗΣ:
Αν χ=[0,5*βαθμός Α λυκείου +1*βαθμός Β λυκείου +1,5*βαθμός Γ λυκείου]/3
και y=μέσος όρος των πανελλαδικών μαθημάτων τότε:
• Αν 0.7<x/y<1.3 τότε ο 5ος βαθμός μπορεί να υπολογιστεί:
5ος βαθμός= [(x+y)/2]*0.7
• Διαφορετικά:
5ος βαθμός= [(0.7*x+1.3*y)/2]*0.7
Σχολιασμός: Κατά την γνώμη μου ένας τέτοιος αλγόριθμος θα ήταν πολύ ποιο δίκαιος για τους μαθητές ακολουθώντας την λογική του νομοσχεδίου.
Ευχαριστώ.
ΕΝΣΤΑΣΗ ΣΤΟ ΑΡΘΡΟ 4 Έχω μία σοβαρή ένσταση πάνω στην διαδικασία εξαγωγής του 5ου βαθμού για την εισαγωγή του μαθητή στην Τριτοβάθμια Εκπαίδευση. Αρκεί ένα παράδειγμα για να αποδείξω την αδικία που γίνεται κατά την διαδικασία. Έχουμε δύο μαθητές της Γ λυκείου που δίνουν πανελλαδικές. Για τον Α μαθητή ισχύει: Ο γενικός βαθμός προαγωγής της Α’ τάξης Γενικού Λυκείου είναι 14. Ο γενικός βαθμός προαγωγής της Β’ τάξης Γενικού Λυκείου είναι 15. Ο γενικός βαθμός προαγωγής της Γ’ τάξης Γενικού Λυκείου είναι 16. Και τα γραπτά του στα τέσσερα πανελλαδικός εξεταζόμενα μαθήματα βαθμολογήθηκαν όλα με 11, οπότε και ο μέσος όρος των γραπτών είναι 11. Τότε ισχύει: ΒΠΑ=(14*0,5+15*0,7+16*0,9)/3=10,63311=Μ.Ο. πανελλαδικών μαθημάτων.Οπότε ο πέμπτος βαθμός για την εισαγωγή του μαθητή Β στην Τριτοβάθμια Εκπαίδευση θα είναι Χ=[11*0,5+11*0,7+11*0,9]/3=7,7 Σχολιασμός: Η παρούσα λοιπόν τακτική που χρησιμοποιείται στο νομοσχέδιο είναι μονόφθαλμη και εμπεριέχει κινδύνους. Παραπάνω φαίνεται καθαρά η διαφορά που υπάρχει μεταξύ των δύο μαθητών με την ίδια επίδοση στις πανελλαδικές, αλλά με διαφορετικές επιμέρους βαθμολογίες στις 3 τάξεις του λυκείου. Και συγκεκριμένα το παράλογο είναι πώς ο μαθητής Β με καλύτερη βαθμολογία στην Α λυκείου και την Β λυκείου να βαθμολογείται αρκετά λιγότερο από τον μαθητή Α. Δηλαδή τιμωρείται ο Β μαθητής για την πτώση στην απόδοσή του πράγμα αντιπαιδαγωγικό και παράλογο. Θεωρώ λοιπόν ότι δεν έχουν προβλεφθεί όλες οι περιπτώσεις με τον συγκεκριμένο τρόπο βαθμολόγησης επομένως πάμε να λύσουμε ένα πρόβλημα (ενδεχόμενη υποκειμενική αξιολόγηση μαθητών) δημιουργώντας πολλαπλάσια. Προτάσεις: Για ποιο λόγο τελικά να βάλουμε και 5ο βαθμό στην όλη διαδικασία; Δεν αποτυπώνεται η κατάσταση του μαθητή με τις πανελλαδικές εξετάσεις; Κάποιοι ενδεχομένως ορθός να πουν όχι, τότε θα πρέπει να συμπεριληφθούν με κάποιον τρόπο και οι βαθμολογίες των άλλων τάξεων του λυκείου. Πάντως ο τρόπος που χρησιμοποιείται στο νομοσχέδιο δεν είναι ο ορθός κατά την ταπεινή μου άποψη. ΥΠΟΒΟΛΗ ΣΥΓΚΕΚΡΙΜΕΝΗΣ ΠΡΟΤΑΣΗΣ: Αν χ=[0,5*βαθμός Α λυκείου +1*βαθμός Β λυκείου +1,5*βαθμός Γ λυκείου]/3 και y=μέσος όρος των πανελλαδικών μαθημάτων τότε: • Αν 0.7<x/y<1.3 τότε ο 5ος βαθμός μπορεί να υπολογιστεί: 5ος βαθμός= [(x+y)/2]*0.7 • Διαφορετικά: 5ος βαθμός= [(0.7*x+1.3*y)/2]*0.7 Σχολιασμός: Κατά την γνώμη μου ένας τέτοιος αλγόριθμος θα ήταν πολύ ποιο δίκαιος για τους μαθητές ακολουθώντας την λογική του νομοσχεδίου. Ευχαριστώ.